If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+4q-1=12
We move all terms to the left:
3q^2+4q-1-(12)=0
We add all the numbers together, and all the variables
3q^2+4q-13=0
a = 3; b = 4; c = -13;
Δ = b2-4ac
Δ = 42-4·3·(-13)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{43}}{2*3}=\frac{-4-2\sqrt{43}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{43}}{2*3}=\frac{-4+2\sqrt{43}}{6} $
| 6x+25+(5x+1)=180 | | u-155=291 | | k/3-10=-6 | | x×70=84 | | 19-2y=7 | | 2p^2-6p+9=0 | | 2x^2-4x-4=36 | | 7x^2-10=18 | | 5x+33=6x-2 | | 10x4/7=8 | | K/2+1k=-2k | | 4(6x-7)=41 | | 29=6v-8 | | 1/4+5=x | | 12x+-12=180 | | 9-3(2x-1)=5(3x+2)-4 | | 13x^2+3x-8=0 | | 8x+2=-40 | | x+1/3x+(x-65)=180 | | 1/4(36x-8)+1/2(6x-20)=180 | | 1/3+x-65=180 | | 4t+1=1 | | x/40=75/100 | | 6.8x=204 | | 4y-8=11-3 | | 14y=15y2 | | 3x+10=-32-4××= | | 3w-w(3)=2 | | 3w-w()=2 | | 4y-3=11-4 | | -5.2y-7=-22.6 | | 10x-14=180 |